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Abstract
Every year, 250,000 people worldwide suffer a spinal cord injury (SCI) that
leaves them with chronic paraplegia - permanent loss of ability to move their
legs. SCI interrupts axons passing along the spinal cord, thereby isolating
motor neurons from brain inputs. To date, there are no effective treatments
that can reconnect these interrupted axons. In a recent breakthrough,
.NeuroRestore developed the STIMO neuroprosthesis that can restore walking
after paralyzing SCI using Epidural Electrical Stimulation (EES) of the lumbar
spinal cord. Yet, the calibration of EES requires highly trained personnel and
a vast amount of time, and the mechanism by which EES restores movement
is not fully understood. In this master thesis, we propose to address this
issue using modeling combined with Artificial Neural Networks (ANNs). To
do so, we introduce the CyberSpine model to predict EES-induced motor
response. The implementation of the model relies on the construction of a
multipolar basis of solution of the Poisson equation which is then coupled to an
ANN trained against actual data of an implanted STIMO user. Furthermore,
we show that our CyberSpine model is particularly well adapted to extract
biologically relevant information regarding the efficient connectivity of the
patient’s spine. Finally, a user-friendly interactive visualization software is
built.

Keywords
Spinal Cord Injury, Epidural Electrical Stimulation, Computational Neuro-
science, Finite Element Model, Artificial Intelligence, Optimal Transport,
EMG, Muscle Activation
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Sammanfattning
Varje år drabbas 250 000 människor i hela världen av en ryggmärgsskada som
ger dem kronisk paraplegi - permanent förlust av förmågan att röra benen.
Vid en ryggmärgsskada bryts axonerna som passerar längs ryggmärgen,
vilket isolerar de motoriska neuronpoolerna från hjärnans ingångar. Hittills
finns det inga effektiva behandlingar som kan återansluta dessa avbrutna
axoner. NeuroRestore utvecklade nyligen neuroprotesen STIMO som kan
återställa gångförmågan efter förlamande ryggmärgsskada med hjälp av
epidural elektrisk stimulering (EES) av ländryggmärgen. Kalibreringen av
EES-stimuleringar kräver dock högutbildad personal och mycket tid, och
den mekanism genom vilken EES återställer rörelse är inte helt klarlagd.
I denna masteruppsats föreslår vi att vi tar itu med denna fråga med
hjälp av modellering i kombination med artificiell intelligens. För att göra
detta introducerar vi CyberSpine-modellen, en modell som kan förutsäga
EES-inducerad motorisk respons. Implementeringen av modellen bygger på
konstruktionen av en multipolär bas för lösning av Poisson-ekvationen som
sedan kopplas till ett artificiellt neuralt nätverk som tränas mot faktiska data
från en implanterad STIMO-deltagare. Dessutom visar vi att vår CyberSpine-
modell är särskilt väl anpassad för att extrahera biologiskt relevant information
om den effektiva anslutningen av patientens ryggrad. Slutligen bygger vi en
användarvänlig interaktiv visualiseringsprogramvara.

Nyckelord
Ryggmärgsskada, Epidural Elektrisk Stimulering, Beräkningsneurovetenskap,
Finita Elementmodellen, Artificiell Intelligens, Optimal Transport, EMG,
Muskelaktivering
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Chapter 1

Introduction

1.1 Overview
Spinal Cord Injury (SCI) refers to the impairment of any segment of the spinal
cord, often leading to irreversible loss of physiological functions below the
affected region [1]. The lesion resulting from SCI disrupts the transmission of
electrical signals between the brain and the nervous system situated below
the injury site. Consequently, patients may experience such as complete
or incomplete paraplegia, significantly limiting their ability to walk. Over
the past decades, Epidural Electrical Stimulation (EES) has been proved
preclinically [2, 3, 4, 5, 6, 7, 8] and clinically [9, 10, 11, 12, 13, 14, 15, 16]
as one potential solution to restore walking. EES is an invasive method, that
requires surgery to position the electrode directly on the dura mater of the
spinal cord. The EES rehabilitation equipment is shown in Figure 1.1.

More specifically, to restore walking, Spatiotemporal EES has proven
to be an effective paradigm [6]. Spatiotemporal EES works by delivering
specific stimulation patterns of EES according to the gait phase in order to
activate different muscle groups with different functions. Gait can be divided
into several key phases. Figure 1.2 illustrates the corresponding muscle
activating during the certain gait phase, which is the pattern researchers want
to reproduce through EES [15].

The EES clinical timeline is shown in Figure 1.3. The current
configuration phase of EES relies on manual calibrations. Thus, using a
computational model as prior knowledge holds the potential to automate the
calibration procedure. After the rehabilitation, the patient is able to walk with
the assistant equipment [9].
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Figure 1.1: EES rehabilitation equipment. EES electrodes together with the
body weight support equipment form one type of rehabilitation system aiming
to help the patients walk. (Figure adapted from [17])

Figure 1.2: Ideal muscle activation through EES for key phases of gait.
Electrodes alongside give examples of EES configurations for one specific
patient to activate the corresponding muscle groups. (Figure adapted from
[9])

Figure 1.3: Typical EES clinical timeline. The whole procedure contains
inclusion, surgery, EES configuration, rehabilitation with EES, and use of EES
during study extension. (Figure adapted from [9])
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1.2 Background

1.2.1 Spinal Cord Neuroanatomy
The Central Nervous System (CNS) comprises the brain and the spinal cord,
as depicted in Figure 1.4, and the peripheral nervous system constitutes the
other part of the nervous system. The spinal cord consists of various tissues,
illustrated in Figure 1.5. The brain communicates information to the lower
limb through the spinal cord. The SCI blocks this communication and causes
paraplegia. For in-depth knowledge, one can refer to ”Principles of Neural
Science” [18].

The dorsal side of the spinal cord primarily contains ascending sensory
pathways. These pathways transmit sensory information from the body to the
brain, allowing us to perceive sensations such as touch, pain, temperature,
and proprioception (awareness of body position). Conversely, the ventral
side of the spinal cord primarily contains descending motor pathways. These
pathways carry motor commands from the brain to the muscles, enabling
voluntary movement and motor control throughout the body.

During our clinical trials, the EES electrode is positioned on the dorsal side
of the spinal cord, exterior to the dura mater. Intuitively, one might assume that
the ventral side would be a better choice for electrode placement, considering
the presence of motor pathways in that region. However, there is evidence
showing that preserving proprioception information over the dorsal side is also
important to restore walking [11], and the dorsal side is easier to access during
the surgery, compared to the ventral side.

In Figure 1.6, a detailed anatomic structure of the spinal cord is shown,
including cervical (C), thoracic (T), lumber (L), and sacral (S) segments. The
EES targets the roots over lumbosacral segments to stimulate the walking-
related muscles.
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Figure 1.4: CNS anatomy. The spinal cord includes the cervical, thoracic,
lumber, and sacral segments. (Figure adapted from [18])
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Figure 1.5: Anatomical structure of the spinal cord. (Figure adapted from
[19])
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Figure 1.6: Division of the vertebrae along the spinal column, including
cervical (C), thoracic (T), lumber (L), and sacral (S) segments. (Figure
adapted from [1])
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Figure 1.7: 3D personalized structural model built from CT scan MRI images.
(Figure adapted from [9])

1.2.2 Personalized spinal model for EES
The detailed anatomical structures of the spinal cord exhibit variability
among individuals [19]. This variability in the spinal cord requires the
creation of personalized spinal models, ensuring the best possible therapeutic
outcomes. These models are derived from high-resolution multimodal clinical
images, combining data from Computerized Tomography (CT) and Magnetic
Resonance Imaging (MRI) through a semi-automated process [9].

The output of the resulting algorithm provides the structural 3D model file
containing all tissues shown in Figure 1.7 except the spinal roots, saving the
x y z axes of each tissue’s position and the name of the corresponding tissue.
The segmentation of the spinal roots is done by hand. The spinal roots are
crucial since the motivation of the simulation is to inspect the activation of the
different roots, which will transmit the nerve impulse further to the muscles

In this thesis, the model provides the essential personalized structural file
that will be used in the Finite Element Model (FEM). It is worth mentioning
that the model does not encompass all anatomical structures present in the
spinal cord. Nevertheless, it does include most of the crucial tissues essential
for calculating the electrical field distribution.

In Figure 1.8, the EES electrode placement and the relative position with
the personalized spinal cord segments are shown.
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Figure 1.8: EES electrode placement and the relative position with the Spinal
Segments with cathodes in yellow and anodes in black. In the figure, one
configuration is shown and the activation of the roots should be around L3-
L5.

1.2.3 Deep learning Top-Down Approach for Neuro-
science

Deep learning has shown promising progress recently in building up
artificial intelligent systems, thanks to the development of backpropagation
optimization algorithm [20] and the ability to approximate functions with
multilayer perceptron [21]. However, it is still controversial among different
Neuroscience researchers how it could be used for scientific discovery.
More specifically, Deep Learning builds up a model trying to predict the
observations, without understanding the physical mechanism behind them
from a foundationalism point of view—so-called the ”Top-Down” Approach.
Then, the model may reveal some hidden knowledge after the algorithm
converges, but a proper way to connect this knowledge to the previous
knowledge systems can not be found. There are papers suggesting this type
of methodology [22, 23, 24].

In this thesis, we posit that the optimization-based model possesses the
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potential to unveil latent information once it becomes proficient in predicting
observed phenomena. This implies that once the model’s outcomes converge,
there is a likelihood that they provide insights into the underlying structure
within the patient (if enough prior assumptions are imposed to the model).

1.3 Purpose and Problem

1.3.1 Computational Spinal Cord Model for EES
In section 1.1, we introduced the basic EES rehabilitation process. However,
the underlying mechanism of how EES interacts with the neuronal system in
the spinal cord remains unclear. To improve the rehabilitation’s efficiency,
it is essential to gain a clear understanding of the Electromagnetism (EM)
phenomenon occurring inside the patient’s spinal cord and the relation of the
activation of spinal roots to the activation of muscles during EES.

Computational models help people understand better and perform
scientific experiments when the research subject is too costly to perform
experimental manipulation in the real world, by trying to capture the
characteristics of the observed phenomenon. Then, a computational spinal
cord model is a natural choice because of the fast, accurate result we can
get from computer simulations and the boost of computer algorithms in the
past decades. Previously, there were related models for electrical stimulation
[25, 26, 27, 28, 29]. However, they are either not easily generalized or
interpretable in multipolar situations. Modeling the stimulation over the spinal
cord has been explored for decades. We refer to the [30] for a literature review
of computational models for the design of spinal cord stimulation therapies.

1.3.2 Problem Definition
From previous works, several steps have already been achieved: the theory of
constructing current-based multipolar EES simulation by setting monopolar
simulations as a basis in linear space [25]; a program to optimize personalized
voltage-based multipolar EES configuration given the target spinal root
activation [31, 9]; the theory that neural network can be used to approximate
functions [21].

Current-based multipolar EES allows the user to vary the current
levels of individual electrodes for a more precise and targeted stimulation.
This flexibility in current adjustments offers the potential to optimize the
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therapeutic effects of the stimulation and tailor it to the patient’s specific needs
and condition.

One important problem during clinical trials is to decide which electrode
configuration is proper to use for a certain muscle activation [9]. Then,
with these achievements —— Can we inspect the spinal root recruitment and
predict the muscle activation with a prediction error of around 15% for each
muscle given a certain EES configuration?

1.4 Research Methodology
The hypothesis throughout the thesis is that it is plausible to build a biophysical
model that can predict muscle activation given current-based multipolar EES
configurations over the spinal dorsal roots of the lumbosacral segments.

Operationalization for this hypothesis is to convert the muscle activation
into Electromyography (EMG) signals. It is one way to observe muscle
activation by acquiring the electric signal generated by muscle cells. The
limitation of this operationalization is that the EMG sensor can only detect
muscle activation from superficial muscles directly beneath the skin. However,
it is a compatible choice for human patients because the EMG sensors are non-
invasive.

This work is a continuation of the model [9]. In this paper, monopolar
FEM simulation was provided but it did not predict the muscle activation.

There exists one similar work [29], which uses an end-to-end deep neural
network to approximate biological systems from the spinal cord to muscles.
This model predicts muscle activation based on EES parameters and optimizes
EES parameters capable of producing desired EMG recruitment. However, the
model does not provide inner information to explain which root is activated
and does not inspect the EM field distribution along the spinal cord.

Here, we combine the work from the FEM simulation for EES [25, 9, 31]
and inspiration from deep learning for neuroscience [22]. The methodology is
a combination of bottom-up (FEM) and top-down (ANN) research approaches.
First, FEM models the EM field distribution inside the lumbosacral spinal
cord to gain detailed information from EES electrodes to spinal roots. Then,
a biophysically interpretable Artificial Neural Network (ANN) is built to
approximate the biophysical function mapping the EM field simulation results
of the spinal roots to the muscle activation. The prediction of EMG is achieved
by using the backpropagation algorithm [20] based on the patient’s EMG
dataset over the ANN.
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1.5 Goals and Outcomes
The goal of this project is to get a biophysical computational model of
the spinal cord to simulate the effect of EES, combining the quasistatic
electromagnetism FEM with an ANN. This has been divided into the following
three sub-goals:

1. Prediction of the spinal root activation percentage or the muscle
activation percentage given the input current-based multipolar EES
configurations;

2. Optimization algorithm of the electrode setup given a root activation
target;

3. Interactive Visualization Software for checking the EM field simulation
results of current-based multipolar EES.

The outcomes of this thesis are the following:

1. Sub-Goal 1, 2, 3 are achieved;

2. The myotome matrix of the patient emerged from the neural network as
a secondary result of the prediction;

3. An Optimal Transport (OT) based metric to measure the distance
between two electrode configurations is provided.

1.6 Delimitation
This work only validates the personalized model over the spinal lumbosacral
segments. The model is simplified by excluding unimportant physiological
factors related to EM properties.

In the thesis, only an optimization algorithm for targeted root activation is
implemented. There is no experiment related to optimization toward targeted
EMG activation.

The biophysical model is not fully deductively generated. It remains an
open discussion whether the phenomenal neuroscience model generated from
the top-down approach is interpretable or not [22].
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Chapter 2

Methodology

The overall methodological workflow is shown in Figure 2.1. To achieve
the goal of the thesis, we would import a personalized model built from
CT/MRI, to further perform FEM analysis on it. The Activation Function is
then calculated, and together with the output of the FEM, to be the input of
the ANN, to predict the final muscle activation generated from the previously
collected EMG dataset.
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2.1 Electromyography Data
The STIMO dataset was acquired during the use of the STIMO neuroprosthe-
ses by the STIMO clinical trial (www.clinicaltrials.gov ID NCT02936453)
participants with chronic paraplegia secondary to spinal cord injury. The
STIMO dataset includes fully characterized recordings of motor patterns
evoked by EES protocols of varying parameters: configuration of electrodes
that deliver EES, EES frequency, amplitude, and duration. The recordings
comprise EMG of all major leg muscles of both legs. The EMGs were
recorded by the experimentalists Gaïa Carparelli and Pedro Abranches at a
sampling frequency of 1259.25 Hz, an example is shown in Figure 2.2.

Preprocessing the EMG data into ”Muscle Activation” is done by dividing
the maximum activation of the single trial of one particular muscle by the
maximum activation of this muscle across the whole session. The calculation
is based on the EMG data in the last half period of time of the stimulation
to account only for the stationary activation of the muscle. Then the muscle
activation converts into the percentage of activation. Thus, the data is
normalized based on the maximum value of the session as the maximum to
avoid shifting between sessions.

Figure 2.2: An example of one trial of EMG data. The EES is set to 20Hz
and 3.5mA, with electrodes No.4 as the cathode and electrodes No.3 and 5
as anodes. The left and right refer to the left and right lower limbs. The
figure is plotted within the time domain. The red line represents the pulses
of EES. Iliacus(IL), Rectus Femoris (RF), Vastus Lateralis (Vlat), Sartorius
(ST), Tibialis Anterior (TA), Gastrocnemius Medialis (MG), and Soleus (Sol)
EMG signals are shown here.
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2.2 Electroquasistatic Electromagnetic Sim-
ulation

Quasi-static EM simulation is based on one simplification of Maxwell’s
equations where the electrical field is considered to change slowly. In doing so,
the time derivative can be ignored in the calculation. Computation resources
and complexity decrease significantly with this simplification. The set of
Maxwell’s equations is:

∇ · E =
ρ

ϵ0
∇ · B = 0

∇× E = −∂B
∂t

≈ 0

∇× B = µ0

(
J + ε0

∂E
∂t

)
.

(2.1)

Here, E represents the electric field, and B represents the magnetic field. The
desired outcome pertains to the electrical potential V. With electroquasistatic
assumption, it follows that

E = −∇V.

Then, after algebraic manipulations [25], the problem at hand simplifies to
Poisson’s equation:

∇ · (σ(x)∇V (x)) = 0, (2.2)

where σ(x) is the conductivity of the physiological tissues.
To establish a well-defined partial differential equation, one must specify

appropriate boundary conditions for Equation 2.2. Boundary conditions
determine how the electric potential V (x) behaves on the boundaries of the
domain in consideration. These conditions are crucial in defining a unique
solution for the partial differential equation. In our case, if the computation
domain Ω is set in voltage as

V (x) = v0(x), ∀x ∈ ∂Ω (2.3)

with v0 : ℜn → ℜ, it is named Dirichlet boundary condition. If the boundary
Ω is set in current density j0 as

σ(x)∇V (x) · n(x) = j0(x), ∀x ∈ ∂Ω (2.4)
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Tissue Conductivity (S/m)
Gray Matter 0.23

Bone 0.02
Disc 0.65
Fat 0.04

Cerebrospinal Fluid 0.65
Paddle 1e-12
Saline 2.0

Table 2.1: Conductivity Parameters

with j0 : ℜn → ℜ, it is named Neumann boundary condition.
In clinical situation for our EES electrodes, implanted electrodes are set in

current I , named Integrated Current Condition (ICC), where∫
Ω

σ(x)∇V (x) · n(x)ds = I0. (2.5)

The condition means the integration of the current density over the surface of
Ω is equal to the current value one set in the practical situation.

FEM solvers tackle the problem by discretizing equations and using
numerical algorithms. Commercial software Sim4life is used in our case. The
structural model and the model after voxelization in Sim4Life are shown in
Figure 2.3. The conductivity of different tissues is obtained from [27], listed
in Table 2.1.

2.3 Multipolar Simulation
One important property of Maxwell’s equations and the simplified Poisson’s
equation is to be linear. Thus, a set of linearly independent solutions to the
equations could form a basis that can span the whole solution space. To make
multipolar EES simulations, we only need to solve certain numbers of linearly
independent conditions.

The Sim4Life software used to solve Poisson’s equation can only set
Dirichlet boundary conditions, which form the solution for voltage-controlled
multipolar configurations. Thus, we need an algorithm to convert the solution
from the accessible Dirichlet condition into the ICC. Defining:

• {Ti}i=0,1,...,N−1 represents the set of n electrodes
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Figure 2.3: Anatomical model and its associated Finite Element model. A:
Outlook of the anatomical model. The model includes bones, discs, white
matter, spinal roots, and EES paddles. B: The figure displays the resulting
finite element model obtained after the voxelisation of the anatomical model.

• Ω represents the whole spinal cord model where we would perform
electroquasistatic simulations

• ∂Ω represents the boundaries including the outer edge of the simulation
area plus the electrodes

• {vi} represents one group of linearly independent boundary conditions,
for instance, {vi} = {1, 0, 0, ..., 0},

then the voltage-controlled multipolar configurations, which has Dirichlet
boundary 2.3 over {Ti} (solved with Sim4life), reads

∇ · (σ(x)∇V (x)) = 0 ∀x ∈ Ω

σ(x)∇V (x) · n(x) = 0 ∀x ∈ ∂Ω/{Ti}
V (x) = vi ∀x ∈ {Ti}.

(2.6)

The current-controlled multipolar configurations, which has ICC 2.5 over
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{Ti}, stated as
∇ · (σ(x)∇V (x)) = 0 ∀x ∈ Ω

σ(x)∇V (x) · n(x) = 0 ∀x ∈ ∂Ω/{Ti}∫
Ti

σ(x)∇V (x) · n(x)ds = Ii ∀x ∈ {Ti}.
(2.7)

Thanks to the inspiration from [25] and Esra Neufeld for providing a
linear operator to transform the basis from the space of voltage-controlled
configurations to current-controlled multipolar configurations.

Making use of the linear property of the equation, one can find a basis that
can span all possible solutions for the simplified Poisson’s equation, noted as

V (x) =
∑
i

viVi(x), vi ∈ ℜ (2.8)

where Vi(x) represents one simulation result as an eigenvector of the whole
solution space.

Due to the gauge constant, the degree of freedom of the solution space for
voltage potential is N − 1, where N is the number of electrodes in our case.
For a detailed explanation, one should check the mathematical proof in [25].
Then, we can assume v0 = 0. By the linearity of the gradient operator and of
the integral, we could obtain∫

Tj

σ(x)∇V (x) · n(x)ds =
N−1∑
i≥1

vi

∫
Tj

σ(x)∇Vi(x) · n(x)ds. (2.9)

Denoting
Iij :=

∫
Tj

σ(x)∇Vi(x) · n(x)ds,

then, it is easily obtained that

Ij =
N−1∑
i≥1

viIij ∀j = 1, 2, ..., N

If we define the matrix J, vectors I and V as
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J := (Iij)
T
1≤i,j≤N−1 :=


I11 I21 . . . . . . IN−1 1

I12 I22 . . . . . . IN−1 2
... ... . . . ...
... ... . . . ...

I1N−1 I2N−1 . . . . . . IN−1N−1


and

I :=


I1
I2
...
...

IN−1

 V :=


v1
v2
...
...

vN−1

 ,

then, we would obtain
V = J−1I. (2.10)

With the formula, the wanted coefficients in current I can be converted into the
equivalent coefficients in voltage V. The matrix J is obtained by integrating the
current density over the electrodes Ti with the simulation j under the Dirichlet
boundary condition. It is worth noting that, due to the gauge constant, the

I0 = 0−
N−1∑
i≥1

Ii, v0 = 0.

Finally, the value over N electrodes was transformed from the given current
value to the voltage value, which solves our problem by converting the
accessible simulation results of voltage-controlled configurations in Sim4Life
to the current-controlled multipolar configurations.

2.4 Cable Theory and Activation Function
To predict muscle activation, knowledge of the activation of the spinal roots
is needed. In Computational Neuroscience, the cable theory is used to
biophysically model the transmission process of electrical signals along the
nerve fibers (also named axons). The gold standard cable model for electrical
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stimulation is the Spatially Extended Nonlinear Node (SENN) [32], given as

Cm
dVn

dt
+ Ie,n = Ga (Ve,n−1 − 2Ve,n + Ve,n+1) . (2.11)

In this equation, Cm is the membrane capacitance, dVn

dt
represents the time

derivative of the membrane voltage Vn, Ie,n is the current injected at node n

of segment i, and Ga is the axial conductance. The SENN model accounts
for the spatial and temporal dynamics of the electrical stimulation response
in an axon, making it a reliable benchmark for assessing the effectiveness of
electrical stimulation paradigms.

However, SENN becomes computationally burdensome when applied to
large-scale simulations. In [31], another method has been proposed based on
a simpler method: the Activation Function (AF) method.

Knowing the electric potential V (x) along the spinal cord model, the
activation function [31], which is a normalized version of the induced current
along the neuro fibers, can be used to calculate the activation of the nerves.

The AF assumes the external current is dominant so that the internal
current can be ignored and excluding the temporal calculation., given as

dVn

dt
≈ AFn =

Ga

Cm

(Ve,n−1 − 2Ve,n + Ve,n+1)

=
d∆x

4ρlcm
· Ve,n−1 − 2Ve,n + Ve,n+1

∆x2
.

(2.12)

In practice, the first term can be seen as a constant, which does not affect
our calculation and can be set to 1. The AF employs the second derivative
of electrical potentials to depict the driving force behind nerve impulses.
In practice, when examining a single neuron fiber, if the AF surpasses the
neuron’s membrane potential, it is considered an action potential, implying
that the fiber has been activated.

Then, one can get the root activation of the spinal roots based on the AF
formula, which is necessary to construct ANN later.

2.5 Artificial Neural Network Model of Root-
Muscle Linkage

In Section 1.2.3, we introduced the assumption of using a ”Top-Down”
approach and to leverage an Artificial Neural Network as a tool to answer
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Neuroscience related questions. Here, we describe the network in charge of
predicting EES-induced motor activation.

First, we name the calculation of the EM field from the multipolar
simulation results given a certain electrode configuration as the ”Electrode
Layer”. Then, we denote

−→
AF r,f = (AF 0

r,f , AF
1
r,f , ..., AF

n−1
r,f )

the activation function of the nerve fiber f belonging to the root r, each AF i
r,f

is calculated according to 2.12. We can then determine if the nerve fiber is
active. We define the ”Fiber Activation Layer”:

Ar,f :=

{
0 not active
1 active

= H(
Thr,f − max(

−→
AF )

γ
) (2.13)

with THr,f representing the fiber threshold and H representing the Heaviside
function. In practice, since H is not differentiable, it is replaced by a sigmoid
function and γ is a scaling factor to approximate H . Then, for a given root, we
define the spinal root activity as the percentage of the activated fibers, named
”Root Layer”:

Rr :=
1

Nf

Nf−1∑
f=0

Ar,f . (2.14)

We define the calculation of the muscle activity of muscle m as the ”Motor
Layer”:

Mm := σ(
1

Nr

Nr−1∑
r=0

|Jm,r|Rr), (2.15)

with Jm,r representing the coefficient of the myotome matrix between which
links root r to muscle m.

Since the electrode is placed on the dorsal side of the root, to activate
the muscles, which are controlled by the motor neuron on the ventral side of
the spinal cord, EES will recruit spinal interneurons. Then, we assume the
σ as a non-linear function could describe the non-linearity of the relationship
between the dorsal roots and the muscle. For interest, Equation 2.15 denotes
a static simplified version of the Wilson-Cowan Model [33].

In one clinical trial, only one type of electrode configuration will be
implemented. For one trial, we have Nm Muscle Activation data M . The
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loss function is defined as

Ltrial(Th, J) :=
1

Nm

Nm−1∑
m=0

(Mm − M̂m)
2. (2.16)

Consequently, the goal of the ANN is to

min
Th,J

Ntrail−1∑
trail=0

Ltrial(Th, J). (2.17)

In this shallow ANN, the only trainable parameters are the thresholds of
different nerve fibers Th and the myotome weight matrix J .

In the above definitions, all mathematical operations can be implemented
within Pytorch and the optimization problem is solved using backpropagation.
The parameters are listed here:

• Dataset: Nf = 50, Nr = 20, Nm = 16, Ntrail = 669.

• Epochs: 2000.

• Learning Rate: 0.25.

• Optimizer: Adam.

• Initialization of the Threshold Th per fiber (same for all roots): [9200,
8710, 8239, 7740, 7250, 6760, 6280, 5790, 5300, 4810] replicated
by 5 times. Values are adopted from results generated from Neuron
Simulations in [31].

• γ: The standard deviation divided by 2 of the initialized thresholds.

• Initialization of the weight matrix J : Xavier uniform initialization with
gain equals 10.

2.6 Validation Method
To validate computational model predictions, we took advantage of the data
recorded under the STIMO clinical trial. We used 20 percent of the recorded
sessions that map EMG responses to complex and unseen EES protocols. We
compared predictions made by the personalized computational model and the
recording from the mapping sessions. We considered the model to be validated
if the mean absolute error in muscle activation is below 15 percent.
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While aiming for the weight matrix J to converge, our goal is to achieve
biophysical interpretability, enabling it to reflect the true myotome of a patient.
Ideally, the matrix should be validated through anatomical examination of the
patient. However, in our specific scenario, conducting such validation via
surgery on the patient is unrealistic.

We could know the myotome should follow some order from the previous
studies [9, 34, 35, 36, 36, 37]. Researchers agree there should be an order of
muscle connecting to different roots, but patient-to-patient variability exists.
Thus, the only way to validate how large the chance that the matrix we get could
be true is to check whether the myotome can show some kind of ”diagonal”
tendency once we sort the muscle and the root according to the common
agreement.

2.7 Optimal Transport Based Metric for Elec-
trode Configurations

Lastly, we define an Optimal Transport based metric for electrode configura-
tions to measure the distance between two electrodes. The metric is not used
in this thesis but would be useful for future work.

With the assumption that the current flowing out of an electrode can
be simplified as a flow of charge over a point, we denote one electrode
configuration as

E =
N∑
i=1

qiδ(e− ei),

where ej represents the coordination of the electrode i in the Euclidean space
and qj represents the amount of charge flowing out the electrode i. Assuming
N electrode contacts on the electrode array, we assume

qi ∈ [−1, 1], ∀i = 1, 2, ..., N,

N∑
i=1

qi = 0.

We separate cathodes as

ci =

{
−qi if qi < 0

0 otherwise
(2.18)
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with

C =
N∑
i=1

ciδ(e− ei),

and anodes as

ai =

{
qi if qi ≥ 0

0 otherwise
(2.19)

with

A =
N∑
i=1

aiδ(e− ei).

Then we get

E =
N∑
i=1

qiδ(e− ei)

= C + A.

(2.20)

Finally, we define the distance between two electrodes E and E ′ as the
following:

d(E,E ′) := W2(C,C
′) + αW2(A,A

′) α > 0, (2.21)

where W2 represents the Wasserstein distance in the Euclidean space. Since
the place of cathodes is more determinant regarding the EM field property, α
is a control parameter to adjust how important the anodes are.

2.8 Software
All along this thesis, we have used the following software: Sim4Life V
7.0.1.8169 is used for the FEM simulation; Python 3.6.13, Numpy 1.16.6, and
Torch 2.0.1+cu117 are used for calculating AF, building ANN and predicting
the muscle activation. Mayavi 4.8.1 is used for visualization.
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Chapter 3

Results

3.1 FEM Result Visualization
The personalized computational model is a tailor-made model of the patient’s
spine. It consists of a 3-dimensional volume conductor providing access
to the anatomical structure of the patient’s spine. This is made possible
by a tissue segmentation of high-resolution MRI scans of the patient’s
spine. The resulting CyberSpine of the patient includes vertebra, discs,
fatty layer, cerebrospinal fluid, white matter, and accurate trajectory of
spinal roots. Assignment of the tissue conductivity allows the calculation of
stimulation-induced electrical field generated by EES for a given electrode
array configuration (i.e. electrode shape, active site, electrode polarity, …).

To construct a multipolar basis of solutions, we conducted 15 simulations
of voltage-controlled EES. Each simulation involves linearly dependent
vectors vi, as outlined in Equation 2.6. Subsequently, the resulting EM
field distribution was converted into current-controlled multipolar EES using
Equation 2.10. Then, one can set arbitrary values in I (sum needs to be 0) and
obtain the corresponding EM solution for any electrode configuration.

By implementing the methodology, we then need ways to first inspect
whether the simulation results are coherent with common sense or not, which
means the current should follow from cathodes to anodes, as well as the
electrical distribution should be gradually changed from cathodes to anodes,
should be observed from the model. Thus, we will provide the visualization of
the computational results generated from the Finite Element Model simulation
and the Activation Function as a way to obtain a first impression of the
stimulation effect.

In Figure 3.1, we display the resulting EES simulation for two electrode
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Figure 3.1: Multipolar simulations. The outcomes of both single cathode
(highlighted in yellow) and single anode (highlighted in black) configurations,
noted as A, as well as cases involving multiple cathodes and anodes, noted as
B. The current flows from cathodes to anodes. Here, A1 and B1 show the
different placement of cathodes and anodes and the current flow. A2 and B2
show the voltage distribution from the EM field. A3 and B3 show the AF value
distribution over the spinal roots.
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configurations: one monopolar configuration, i.e. a single cathode and a single
anode, and one multipolar configuration, i.e. several cathodes and anodes.

On the left panels of Figure 3.1, we show the chosen electrode
configuration as well as the flow of current. As we can see, the current flows
from the cathodes to the anodes. In the middle panels, the color represents the
relative magnitude of the potential distribution along the spinal cord. Finally,
the right panels give access to the AF value along the spinal roots. Therefore,
the visualization tool offers a preliminary estimate of the activated roots. The
concrete calculation requires the nerve fibers’ threshold values, which would
be obtained from the optimization of the ANN. It is worth saying that the
scale is normalized between −1 and 1 since the equation is linear and only the
relative value, matters in the visualization.

The electrical distribution in sub-figure A is not symmetric due to the
fact that the spinal cord is not symmetric in reality and the placement of the
electrode is neither in the precise middle. The precision of our model can not
be calculated since no measurement has been performed inside the patient’s
body. As we argued in Section 2.6, the only to validate our model is to see if
we manage to have a relatively small error in predicting the muscle activation.

In general, one can trust the visualization is able to give a close estimation
of the electrical distribution over the spinal cord. Because the model is
generated from the CT/MRI scan and the commercial software Sim4life,
which has been approved for medical usage. Then, the error can only generated
regarding our simplification pick of the tissues and the precision of the scan
and the algorithm to build up the model, which are considerably acceptable as
we have argued before.

3.2 Optimization of the Current Configura-
tion for Root Activation

Activating different roots can lead to the activation of different muscle groups,
which could cause different movement patterns. Thus, we would like to enable
the EES to activate roots selectively. Here, having the current-basis of solution
representing EES stimulations, we can now obtain the root activation level for
any electrode configuration, and it is calculated from Equation 2.14. Using
the algorithm presented in [31], we can optimize the root activation to reach
a desired pattern. The algorithm is exactly the same as in [31], except that it
outputs the values of the electrode in current and not in voltage.

To illustrate how the optimizer works, we give two examples in Figure
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Figure 3.2: The resulting root activation from optimization. A1: The position
of the cathodes and anodes is shown. The value over cathodes is -0.1mA and
the anode on the left is 0.1mA while the other one is 0.2mA. B1: Visualization
of the Activation Function values alongside the spinal cord. D1: Activated
percentage of each root, obtained by the optimizer. The goal is to activate
the dorsal left L3 40%. Here, 25% activation of the L3 dorsal left spinal root
is achieved, while not obviously activating the other roots. A2: Cathodes -
0.04mA, -0.01mA; Anode 0.04mA, 0.01mA. B2: Activation Function. D2:
The goal is to activate the dorsal right L3 40%. Here, 36% activation of it
is achieved. C1 and C2 illustrate the network structure to generate the root
activation.

3.2. Assuming the desired - target - root activation to be 40% activation at L3
dorsal left or 40% activation at L3 dorsal left, with the optimization network,
we obtained 25% activation of the L3 dorsal left spinal root and 36% activation
of the L3 dorsal right spinal root.

The MSE loss for the L3 dorsal left case is shown in fig. 3.3. Once
the loss is converging, we stop the algorithm and check for the electrode
configurations. From the previous examples, we could conclude that the
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Figure 3.3: Loss curve of targeting 40% activation at L3 dorsal left root using
the optimization algorithm provided in [31].

optimization algorithm provides a way of finding the optimal configurations
with our FEM simulation results, given certain root targeting activation
percentages.

3.3 Prediction of Muscle Activation
Predictive models are a valuable tool for neuroscientists. By providing insights
into the spinal cord function, having an accurate predictive model of the spinal
cord could help us to better understand the way EES works. By predicting
the muscle activation given certain electrode configurations, if the model can
perform generalization ability over the test dataset, we then have the chance to
predict the effect of possible movement without having extra clinical trials.

With the methodology introduced in Section 2.5, we illustrate how our
CyberSpine model - which combines both ANN and FEM - becomes a good
predictor of EES-induced motor activation. We trained the framework using
the STIMO dataset - the training was made using 80 percent of the data. Then,
to acknowledge the prediction capability of our CyberSpine model, we tested
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Figure 3.4: Two prediction examples of muscle activation. EMG Prediction
with cathode and anode position shown on the left. The true data are
shown on the right. A: Cathode -2.5mA; Anode 2.5mA. B: Cathode -4mA;
Anodes 2mA for each. The prediction for Left(L)/Right(R) Abdominal(Abs),
Iliacus(IL), Rectus Femoris (RF), Vastus Lateralis (VLat), Sartorius (ST),
Tibialis Anterior (TA), Gastrocnemius Medialis (MG), and Soleus (Sol) are
shown here.

the prediction against 20 percent of the remaining data, i.e. the part of the data
not seen during training.

The cost function to minimize was defined as the deviation between the
muscle activity generated by the CyberSpine model and the recorded muscle
activity, see Section 2.5 for details. The fitting procedure took into account all
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the electrode active sites and stimulation amplitude configurations currently
available in the STIMO dataset.

The overall learning curve regarding the loss defined in 2.17 for the training
dataset is shown in Figure 3.5.

Figure 3.5: Loss curve of training the ANN to predict the muscle activation in
the training dataset.

To illustrate how the predictive CyberSpine model works, we show two
examples of muscle activation prediction in Figure 3.4. As we can see, the
muscle activation predicted by our framework is very similar to the muscle
pattern recorded in the patient.

To quantify the overall prediction capability, we computed the average
error done by the CyberSpine. The absolute average error is presented in
Figure 3.6 A and B. As we can see, the average error is very small — almost
all below 15 percent — meaning that on average the predictions are rather
satisfying.

The results overall show good generalization ability, which could lead
to potential clinical usage to replace the time-consuming procedure of
trying different configurations to activate certain muscles once you have the
previously collected dataset. Both the training data and the testing data are
from the same patient.
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Figure 3.6: Absolute prediction error and the myotome matrix. A: Average
absolute prediction error in radar plot. The prediction for Left(L)/Right(R)
Abdominal(Abs), Iliacus(IL), Rectus Femoris (RF), Vastus Lateralis (VLat),
Sartorius (ST), Tibialis Anterior (TA), Gastrocnemius Medialis (MG), and
Soleus (Sol) are shown here. B: A more detailed bar plot of the prediction
results. The average absolute prediction errors for each muscle activation are
shown as the numbers. The line represents the variation of the prediction error
within each muscle’s dataset. C: Illustration of the position of myotome matrix
J inside the Neural Network. D: Visualization of the myotome matrix. The
matrix has the ”diagonal” tendency.
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3.4 Emergence of Myotome
Biological information extraction can help us improve our understanding of
biological systems by identifying and extracting relevant information from
datasets. This information can be used to identify new relationships between
biological entities. In this section, we take advantage of our framework to
extract the myotome, that is, the matrix of connection between the dorsal roots
and muscles. Specifically, Myotome represents the linkage distribution from
spinal roots to muscles.

To do so, we made use of recent techniques of artificial intelligence which
provide new approaches for neuroscientists to uncover circuit connectivity.

This framework has been successfully used to answer a wide range of
neuroscientific questions, for instance, it has been employed to model different
aspects of sensory, cognitive, and motor circuits. Specifically, we trained the
CyberSpine model to predict motor activation while constraining the network
to keep track of the anatomy of the spinal cord.

As described in Section 2.5, alongside the convergence of our network, it
provides certain interpretability. By directly training the spine network model
on stimulus-induced muscle response, the CyberSpine model provides a way
to efficiently generate a personalized myotome matrix that otherwise could be
near impossible to extract. Indeed, once the ANN has converged, the J matrix
after optimization is obtained and shown in Figure 3.6.

As one can see, the result is coherent with the ”diagonal” tendency
discussed in Section 2.6. This kind of ”diagonal” tendency again proves that
our network is kind of explainable. From the previous papers, it is hard to
conclude if there exists a common agreement on how the myotome matrix
should exactly look like since it varies between individuals, then it is hard to
evaluate our result.

There exists one result in [9] on the same patient we have. Compared to
their results, we obtained almost the same structure, except the Left Iliacus(LIl)
links to the S1 dorsal left (S1_DL). However, we do observe the activation of
the Left Iliacus when stimulating the S1 dorsal left during the clinical trial,
which is coherent with our result. We guess it is caused by the feedback from
the reflex arc, which requires further experiments. In general, this ”diagonal”
tendency follows the anatomical structure of the human body. Thus, we have
reason to believe that this matrix reflects the real linkage situation from roots
to muscles within the patient, who we collect the data from.
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Chapter 4

Conclusions and Future work

4.1 Conclusions
Over the past few years, computational models have become a powerful tool
in analyzing the immediate effects of EES. Most phenomena reported during
EES, such as nerve fiber recruitment and muscle responses, for instance, are
well reproduced by the model. Moreover, it has become a useful tool in the
optimization of electrode design and it has played an important part in guiding
decision-making for the electrode placement during surgery. However, the
model remains a simplification of the actual patient’s spine and improvements
are still needed to cover all salient features of empirical data. A personalized
spine model taking into account the nonlinear dynamics of spinal circuits is
still lacking.

Due to the limited knowledge of the connectivity diagrams of spinal
circuits, biologically constrained artificial intelligence appears to be the
cleverest alternative. In this master thesis, we used this approach to study EES-
induced motor response. To do so, we have implemented a multipolar basis
of solution of the Poisson equation, coupled the basis to an artificial neural
network, and trained the ANN layers against the patient’s actual data. We have
shown that the resulting CyberSpine model was able to predict accurately EES-
induced motor response. Furthermore, we illustrated how our model became
handy in extracting biologically relevant information regarding the efficient
connectivity of the patient’s spine. Therefore the goals set in Section 1.5 have
been accomplished.



38 | Conclusions and Future work

4.2 Limitations
In the thesis, we implemented an Artificial Neural Network (ANN) to mimic
the neural link between the spinal roots and motor neurons. Usually, such
a strategy requires a large dataset for training. However, only 669 trials of
data were available for our project. More data might be required to minimize
prediction errors and increase the statistical significance of the myotome
matrix. Furthermore, to get more reliable results, the real validation would
consist of testing the CyberSpine model during a new session with the patient.

4.3 Future work
Testing our prediction results during new clinical sessions would be the first
step as it would offer a true validation and ensure the effectiveness of the
CyberSpine model.

Secondly, within this thesis, we have implemented the quasi-static
simulation, which caused the absence of the time domain information. We
pre-processed the EMG data into the maximum activated percentage for the
same reason. Thus, in the future, it would be relevant to study how the
myotome changes for different choices of stimulation frequency, as it has
been observed that different muscles are activated under different stimulation
frequencies. With more time domain information, training against kinematic
instead of muscle activation would also be a possibility. Directly predicting
the kinematics is even more useful, because restoring walking is the final goal,
and knowing the motor activation is only an intermediate link.

Besides restoring walking, it would be also interesting to transfer our
results to the upper limb movement. Since the upper limb has a greater degree
of freedom than the lower limb, it would be useful for finding the proper
stimulation configurations during EES.

4.4 Reflections
The overall work is very interesting and was carried out as scheduled.
However, unnecessary time was wasted when doing the simulations due to the
details of the math were not fully understood before starting the simulations.
For future projects, a full understanding of the methodology is a must before
starting the experiment to avoid blind debugging time.
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4.5 Ethics
The data and all clinical test is collected as part of the clinically feasible study
STIMO. This study was approved by the Swiss ethical authorities (Swissethics
protocol number 04/2014 project ID PB_2016-00886, Swissmedic protocol
2016-MD-0002) and was conducted in accordance with the Declaration of
Helsinki. All participants signed a written informed consent before their
participation. More information at www.clinicaltrials.gov (NCT02936453).
All surgical and experimental procedures were performed at the Lausanne
University Hospital (CHUV).

4.6 Sustainability
The thesis provides a possible solution for gaining a better understanding of
treating spinal cord injury patients. It supports human health and provides a
sustainable solution for society since the only consumption after implantation
of the EES electrodes is electricity, which can potentially be generated by solar
energy.
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