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Abstract—Non-dispersive infrared gas sensing is a popular
technology for C'O. level monitoring. Using machine learning
algorithms to replace humans for auto-calibrating the gas sensor
has been an important topic recently. Previously, an algorithm
based on Hidden Markov Model and Dempster—Shafer theory
has been proposed. In this paper, the algorithm is implemented
and verified on our own dataset. The result is that even though
the methods worked as expected, the success of the proposed
algorithm is sensitive to the non-fixed and human-involved
aspects of the process.
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1. BACKGROUND

The C'O2 concentration is an important measurement in
many areas, for example, in health and safety applications.
Due to large areas having to be measured and sensors having
to be placed close together, there is a need for low-cost COs
sensors. One of the most common ways to measure C'Oq
concentration is to use non-dispersive infrared (NDIR) sensors.
The working principle is illustrated in Fig. 1. When infrared
light irradiates the tube, some of the light will be absorbed by
the gas molecules. The amount of light that has been absorbed
by the gas is then used to calculate the gas concentration. The
problem is that these sensors often are sensitive to aging and
environmental factors which leads to poor accuracy. One way
to mitigate this effect is by calibration [1].

One established calibration method is the Automatic Base-
line Correction (ABC) which uses the baseline value, where
the C'O5 concentration is assumed to be the same as in fresh
air. This method works well when the sensors get regular
exposure to fresh air but not in places, for example, in
large cities where the gas concentration is always high [1].
In recent research, the use of machine learning algorithms
for self-calibration of sensors has been explored. In [1], a
Hidden Markov Model (HMM) based calibration method is
investigated. The paper develops both an unsupervised and su-
pervised learning model for temperature compensation of the
baseline value. The result showed an improvement in accuracy
using the data-driven calibration for both the supervised and
unsupervised approaches.

Another important aspect of sensor calibration is sensor
fusion. This is the process of combining measurements from
multiple sensors to achieve a more accurate result than could
be attained using only one sensor. One theory that is widely
applied is the Dempster-Shafer (DS) theory which is based
on belief and plausibility. The theory, also known as belief
function theory, combines multiple uncertain results to come

Gas out

. T h

Optical filter Detector

Fig. 1: NDIR sensor [1].

to a conclusion [2]. In [2], a self-calibration scheme based on
belief function theory is proposed for NDIR gas sensors. The
paper implements two methods for sensor fusion, a general
belief function fusion, and a weighted average fusion that
can handle situations where the sensor belief function has
conflicting values. The result shows that the general approach
gives a good result when the belief functions are consistent,
but that the weighted average approach performs better when
the values are conflicting.

In this project, a data-driven calibration scheme for gas
sensors is implemented combining the results from [1] and
[2]. Both the supervised and unsupervised HMMs are applied
to individual sensors for self-calibration. The results from
these sensors are then combined using both the general belief
function sensor fusion and the weighted average sensor fusion.
One important aspect of performing sensor measurement is the
spatial setup of the sensors. For this purpose, measurements
are performed in different spatial setups to investigate how
different distances between sensors affect the result.

II. THEORY
A. NDIR sensor technology

The NDIR sensor relies on the ability of gas molecules to
absorb light of specific wavelengths. According to the Beer-
Lambert law, this ability can be utilized to calculate concen-
tration and absorbance. As seen in Fig. 1, the NDIR sensor
works by letting the gas from the surrounding environment into
a gas chamber. This chamber is then illuminated by infrared
light and a filter on the opposite side of the light source filters
out the wavelength corresponding to the target gas. A detector
then measures the light intensity of the specific wavelength to
find out the attenuation caused by the target gas [3]. By using
the IR signal (I R), the temperature (7"), and a baseline value



called the zero coefficient (zero), the amount of absorbed light
(Abs) can be calculated by a mapping according to,

Abs = f(zero, IR, T). (1

The gas concentration, in this case, the C'Oy concentration,
can then be calculated by mapping the difference between
(Abs) and the reference value for zero gas concentration (R)
according to,

COy = L(R — Abs). 2)

The zero coefficient can be used to compensate for drifting
in measured concentration, as it sets the baseline for when
the concentration of C'Os is zero. When the sensors get older
and are exposed to temperature change or other environmental
factors, the IR signal will change in value. In order to adjust
the zero coefficient after this change, a stochastic model of the
coefficient has to be built. Similarly to [1], this project will
focus on compensation in temperature.

B. Hidden Markov Model

In this project, we use the Hidden Markov Model (HMM)
to calibrate the true zero coefficients due to the varying
concentration level of C'O, over time. The HMM is effective
at characterizing a coherent process, making it well-suited for
this task. An HMM can be used to represent information that
is not directly observable. It can be seen as two stochastic
models: one that is hidden and one that is observable, which
is produced by the hidden one.

An HMM can be defined by a parameter set A = {w, A, B},
where the initial probability distribution 7 = {7; : Vj € [1 :
N]} and the transition probability matrix A = {a;; : Vi,j €
[1: NJ} define a Markov Chain (MC), i.e., the character of
the state sequence, and the emission probability matrix B =
{bj : Vj € [1: N]} describes the distribution of the outputs of
the model. Let N represent the number of the hidden states,
S; represent the state at time instant ¢, and X; represent the
observation at ¢. The elements of the parameter can then be
defined as follows:

m; = P[S1 = jl. 3)
Clij = P[St+1 = j|St = Z] (4)
bi(Xe = z) = fx, 15, (Xe = 2|5 = j). ®)

With the true zero coefficients being seen as hidden states,
and the C'O, values as observable states that are produced by
the true zero coefficient, an HMM can be created. Furthermore,
the temperature difference can be seen as the hidden state
together with true zero coefficients [4]. To learn the HMM,
we utilize both supervised and unsupervised learning methods.
Once the HMM, i.e., the parameter A\ = {m, A, B} of the
model is learned, given the observation sequence, we could
obtain the predicted, i.e., the calibrated true zero coefficients
through the Viterbi Algorithm, which will be explained in
detail in the following section.

Assuming the collected data is fluctuating within certain
range, with an appropriate initialization for training process,
we expected the HMM can model the sequential data correctly
and show great fitting ability.

C. Dempster-Shafer theory

The Dempster-Shafer(DS) theory is a theoretical framework
for modeling uncertainty and combining the probabilities from
different observations. It is a modified framework of the
formal probability theory, and not self-consistent, which is
a weakness that sometimes lead to contradictory results. For
further reading, we refer to [5].

D. Belief Function Fusion via Wasserstein Distance based
Weighted Average

The Wasserstein Distance is defined as

Wy (Pr, Py) =
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This metric measures the distance between two different
probability distributions even with different sample spaces.
With the definition in 6, the belief function from sensor; and
sensor; can be calculated with

A 2 x Wy (Pr, P
Wy (Pr, Py) = 2 (Pr, ) - (7N
222 Wa (Pr, Py)
Having this, we can further define the similarity between P
and Pj as

S(P;,P;)=1—W, (P, Py). (8)

Moreover, we define the support degree of a single probability
distribution as Supp(Pr) = }_; 7fiS(P],PJ). Finally, the
weighted average probability is P = >, ; a;Pr, where
ay = %. Lastly, we can obtain the fused belief
function by apply method from [6], adding it 4 times within

the framework under DS theory, which gives

P(z)=(P®Po Pa P) (). 9)

III. HARDWARE AND MEASUREMENTS

The initial phase of the project involved getting to know the
hardware. Once we were able to take measurements with the
hardware, we began collecting data.

A. Hardware

Five sensor units are used during the project for data
collection and testing. Each sensor unit consists of a low-cost
NDIR sensor, a more expensive and reliable NDIR sensor, an
Adafruit HUZZAH32 - ESP32 Feather Board, and a battery.
The expensive sensor is used as a reference as its measure-
ments will be interpreted as the correct COs values. The
microcontroller connects, through WiFi, to an MQTT broker
where the sensor measurements are uploaded. Measurements
are made periodically, and the units go into deep sleep to save
battery between the measurements; meaning that every time
the unit wakes up to make a measurement, it has to connect
to WiFi and the broker. Since wireless connections are not
always reliable, it is expected that a few measurements will
be lost since the units will not always be able to make the
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Fig. 2: Units with low-cost sensor and a reference sensor.

connection. The measurements are made at minute intervals
and the resulting data is saved to a CSV file on a computer
acting as a server.

The measurements made are: date and time, temperature
from reference sensor, C'Oy concentration from reference
sensor, temperature from low-cost sensor, C'O- concentration
from low-cost sensors, and measured IR signal.

B. Measurements

For data collection, the sensors were placed in an apartment
according to Fig. 3. With this allocation scheme, the C'O,
concentration measurements were expected to differ slightly
between sensors, while still maintaining similar patterns. It
was also expected that the variation of the C'O5 concentration
would be good enough to train the HMM on. The variations
in concentration would come from the movement of people
through the apartment, the opening of doors and windows,
ventilation, and other events. The doors between the rooms
with sensors in them were maintained open throughout the
entire measurement. This was to make sure that the variations
in C'O4 concentration stayed similar in the whole apartment.
The measurement ran for approximately five days to get
enough data for both training and testing of the HMM.
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Fig. 3: Placement of sensors for data collection.

The measured concentration by the reference and low-cost
sensors from the data collection can be seen in Fig. 4. From
the two graphs, it is seen that measurements from the low-cost
sensors are noisier and, although they follow a similar pattern,
measure different levels of concentration than the reference
sensors. Before starting the measurements, an assumption was
made that the sensors closest to each other in the set-up
would have the most similar measurement result. With that
assumption, sensors 01 and 03 would be the most similar
(counting the distance between sensors in the number of
rooms). In Fig. 5, a comparison is made between the Euclidean
distance between measurements from sensor 01 and the rest of
the sensors and the Euclidean distance between measurements
from sensor 03 and the rest of the sensors. The comparison
is made using the reference sensor measurements in Fig. 4. It
is seen from the result that the assumption made beforehand
was not correct since the measurement from sensor 01 is more
similar to the ones made by sensors 04 and 02 than by sensor
03. This shows that the measured concentration is not only
affected by the distance between sensors, but also by other
environmental factors, for example, the presence of people
and ventilation.

To further investigate the impact of different distances
between sensors, another measurement was made with the
sensors placed along a corridor, see Fig. 6. The corridor is
located in an office space where people are present during the
day, and the measurement was taken over a period of two days.
The Euclidean distance between the C' Oy measurements made
by the reference sensors placed at the ends of the corridor
and the rest of the reference sensors can be seen in Fig. 7.
The result shows, similarly to the above, that there are other
factors than the distance that impacts the measurements as the
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Fig. 7: Euclidean distance between time series from two-day
measurement in the corridor in relation to the physical distance
between sensors.

Euclidean distance between the time series does not always
increase with the physical distance.

IV. ALGORITHMS
A. General Process

The whole process is illustrated in Fig. 8. Besides, the final
results of auto-calibration are outputs generated from Viterbi
Algorithm” for the adjusted zero parameters and “Calculate
CO5 with zero” for the data after calibration respectively.

B. Supervised HMM

In supervised learning, we regard the empirical frequency
of occurrence as a probability. First, we preprocess the
collected data by downsampling and taking the average at
appropriate intervals, and removing irrational data using the
3o rule. Then, we calculate the reference true zero coefficients
zeros using COz measured by the reference sensor. Next,
we quantize CO2 measured by the low-cost sensor and the

calculated zeros with and without the temperature difference
AT measured by the reference sensor. Thus, we obtain the
hidden states {zero;} or {(zero;, AT;)}, and the observation
sequence {C'Os¢}. Then, we calculate the frequency of each
state as the initial state probability, the frequency of transition
from one state to another as the transition probability, and the
frequency of each observation given each state as the emission
probability, i.e., m, A, and B, respectively. In this way, the
HMM is learned in a supervised way.

C. Unsupervised HMM

For unsupervised learning, we utilize the Baum-Welch
Algorithm to train the model, i.e., to optimize the HMM
iteratively in the Maximum Likelihood sense. The pseudo code
is as follows:

Initialize: Select appropriate \° = {7, A, B}.
Iterate: For n = 1,2, ..., update A" based on \"~1,
such that

logP[xz|\"] > logP[z|\""1], (10

where m, A, and B are updated separately.

Terminate: Repeat iterating until either a fixed number
of iterations is reached, or the improvement is smaller
that the threshold, i.e.,

logP[z|\"] —logP[z|]A\" '] < Apin. (1D

In both supervised and unsupervised learning, the quantiza-
tion scheme needs to be devised and tuned carefully in order to
obtain a better result. For supervised learning, we use a higher-
resolution quantization for more accurate predictions, while in
unsupervised learning, we use a lower-resolution quantization
for a faster convergence. The initialization of the model is
especially important for unsupervised learning. We use both
probabilities obtained from the supervised learning and the
uniform distributions as the initial probabilities. There is not
much difference between the results of the two initialization
schemes.

D. Viterbi Algorithm

Given HMM )\ = {7, A, B} and the observation sequence,
we could find the most probable state sequence using Viterbi
Algorithm. The pseudo code is as follows:
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Fig. 8: General Process

Initialize: Att =1,
Xj1 = P[S1 = j, X1] = ¢;b;(X1). (12)
Forward: Fort =2,...,T — 1,
Xt = b (Xt) AX X t—10ij; (13)
(jt = arg mlax Xi, t—10ij- (14)
Terminate: At the final step, ¢t = T,
x5, = bj(Xr) mMAX X;, 710845, (15)
Cjur = ATgMAX Xi, 7104 (16)
Backtrack: Attt =T,
%T = arg max x; 7. (17)
Att=T-1,T-2,...,1,
%t = C;t+17t+1' (18)

Once we learn the HMM, given the C'O; measured by the
low-cost sensor, we can quantize the C'O, and predict the
most probable zeros. Then, we can calculate the calibrated
CO4 with the predicted zeros.

E. Sensor fusion

Prerequisites for the sensor fusion implementation are the
models and a subset of the processed data from the low-cost
sensor measurements. The measured C'O5 values of the differ-
ent sensors are quantized with the same quantization scheme
used for training, see Sections IV-B and I'V-C. These quantized
CO4 values denote the HMM observations x* = (i, ..., x!),
for the ith HMM. The temperature and IR measurements are
also needed at a later stage. To construct the belief functions
P;(x), given the CO, observations x* and the HMMs, two
different approaches were implemented.

In one of the approaches, the Forward algorithm is uti-
lized to determine the belief functions. Here, the probability
P[S; = j|z1,...,x¢, A] is determined in the algorithm pro-
cedure, where S; denotes the state at a time t. As previously

established, the states correspond to the true zero coefficients.
However, these states can be mapped into C'Oy values using
Equations 1 and 2 if also given the IR and temperature
measurements.

In the second approach for determining the belief functions,
the Viterbi algorithm is used. Using the most probable state
sequence from the output, the belief functions can be based on
the transition probabilities P[S; 1 = k|S; = j] between each
state, which can be acquired with the state transition matrices.
As for the case of the Forward algorithm approach, these belief
functions give the probabilities for the zero coefficients but can
be mapped into C'O, values.

Since the HMMs can have a different amount of states and
correspond to different zero coefficients, the belief functions
of the different sensors are mismatched. In other words, state
0 in one HMM is not the same zero coefficient as state 0 in
another HMM, and therefore, the jth element in one belief
function is not mapped to the same C'O- value as the jth
element in another belief function. Before any sensor fusion
algorithm can be applied to these belief functions, they need
to be expanded in order for the elements to correspond to
the same C'Os. At first, it was accomplished by using linear
interpolation, but as this caused the sum of all probabilities to
be > 1 (and scaling when normalized), it was decided to fill
the missing elements with zeros instead.

The Wasserstein distance-based weighted average belief
fusion, as described in Equations 6 - 9, is implemented in
a straightforward fashion with NumPy. A scipy function was
used to calculate the Wasserstein distance. After belief fusion,
argmax(P(x)) is taken to obtain the sensor fusion result at
each time instance.

V. RESULTS

A. Decoded zero coefficient using Viterbi

In this project, we have four kinds of HMMs: zero or
(zero, AT) state with supervised or unsupervised learning.
After the training process, the HMM can decode the corre-
sponding true zero coefficient for each sensor. We take the
average of the reference true zero coefficients as the baseline.

Take the supervised learning model with state (zero, AT)
as an example. We take the data collected from 2022-12-01
18:35:11 to 2022-12-04 03:56:40 as the training data. The
CO> and zeros calculated from the reference C'O, are shown
in Fig. 10.
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Fig. 9: Example of fused belief results at a time instance

After pre-processing the data, we quantize the zero, AT,
and C'O4 according to their distributions, respectively, which
is shown in Table I.

We use the CO5 measured by the low-cost sensor from
2022-12-04 07:24:52 to 2022-12-04 21:19:26 to test the
learned HMM. The reference and predicted hidden states,
the corresponding zeros and COs are shown in Fig. 11,
respectively.

We can see that the learned HMM can successfully predict
the hidden states and calibrate the measured C'O; close to the
reference value, even though there is a great error between the
reference and the measured data. The root-mean-square error
(RMSE) can be diminished to 21.211 from 789.620, which is
also smaller than the baseline RMSE of 27.136.

The results of the four models for one particular sensor is
shown in Fig. 9. The RMSEs between the reference C'O2 and

TABLE I: Data information after pre-processing and quanti-

the baseline C'O,, the measured C'O4, and the calibrated C O,
of the four models are shown in table II, respectively.

We can see that there is an obvious difference between
the raw CO2 measured by the low-cost sensor, with an
RMSE up to 137.818. After the calibration of the HMM, the
error is significantly reduced. Among the four models, the
supervised learning model with state (zero, AT') has the best
performance, with an RMSE of 9.238, which is only 6.70%
of the RMSE between the reference and measured C'Os.

The preliminary calibrated results for five low-cost sensors
are shown in Fig. 12.

We can see that although the calibrated C'O5 of each sensor
is close to the reference C'O,, there are still some minor
differences between the results of each sensor. To get a better
result, we introduce sensor fusion.

TABLE II: RMSEs between the reference and other concen-
tration levels of C'Os.

T
2022-11-19 07:27:17

zation scheme.

min max Amin Gmax stepsize
zero 13333 | 13541 13360 13480 8
AT -0.126 | 0.920 | -0.0672 | 0.068 0.0035
CO2 795 1800 992 1770 22

zero, supervised 17.574
(zero, AT), supervised 9.238
zero, unsupervised 26.974
(zero, AT), unsupervised | 27.093
baseline 21.556
measured 137.818
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Fig. 10: Training data.

B. Calibrated Data after sensor fusion

The final result of the calibration is shown in Fig. 14 and
Fig. 15. The difference is not noticeable. Thus, we can say the
operation of getting the probability from the HMM is not key
to our result. The quality of the HMM model itself is crucial.

Meanwhile, we can notice the sensor fusion algorithm here
is not better than the mean of the separated predictions. Thus,
we can claim that the sensor fusion algorithm is not working
as we expected. The reason is the HMM model needs much
more data for training to get a non-sparse transition matrix.

Further, an example of the fused belief results at a time
instance is shown in Fig. 13. In this particular example, the
conflicting belief function is chosen as truth. In these cases,
the higher probability outweighs the distance. This may also
have an impact on the results seen in Fig. 14 and Fig. 15.
Whilst the HMM is a relevant factor here as well, it might
also be relevant to study the effect of other distance metrics.

VI. CONCLUSION

In this project, a combination of methods for data-driven
sensor calibration has been studied for NDIR gas sensors.
First, data was collected in a test environment using both
reference sensors and the sensor to be calibrated. Second,
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Fig. 11: Prediction results of supervised learning model with
state (zero, AT).

HMMs were trained on the data and used to calibrate the mea-
surements. Finally, a sensor fusion algorithm was developed
to combine the multiple sensor measurements.

The separate results of the HMM and the sensor fusion
showed that we successfully demonstrated the networked gas
sensor data-driven calibration methods proposed in [1] and
[2] by You and Oechtering. The combined results showed

T
2022-12-04 21:19:26
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that each part of the process is sensitive to the results of
the previous part, which makes the whole process sensitive to
errors. The training of the HMM depends on the collected data,
and the sensor fusion is highly dependent on the transition
probabilities created by the HMM.
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Fig. 15: Sensor fusion viterbi results

VII. REFLECTION
A. Reflection toward the Model

The HMM created in this project was found to be too strict
for use in all situations, indicating that it would need to be
trained on more data to be applied to a real application. How-
ever, it was shown that the variations in C'O5 concentration
indoors depend on many different environmental factors. This
implies that it would be time-consuming to collect a sufficient
amount of data to train the HMM for every possible scenario.

Another thing that was observed is that the indoor temper-
ature does not vary significantly. Since the HMM is trained
to handle temperature fluctuations, it may be more suitable
for use in an outdoor environment where the temperature
fluctuates more. In an outdoor setting, it could also be the case
that the C'O2 concentration is less affected by environmental
factors as the air flows more freely than indoors. Hence testing
the HMM and sensor fusion on outdoor data could give a better
result.

Using a different initialization for the HMM could also give



a better result as the current initialization needs to be manually
adjusted by amounts of times. Most of the performance of the
model relies on the data collected: only when the patterns
of the training data and testing data are similar, the model
would yield an accurate prediction. However, this cannot be
guaranteed in practice in a short period of time, like several
days. Unpredictable variations of the environment also lead to
the quantization problem, especially when there is a sudden
rise or drop of the concentration level of C'Os, since the
quantization results directly affect the probabilities used to
learn the HMM and irrational probabilities can cause a lot
of trouble, not only for prediction, but also for sensor fusion.
Besides, synchronization is also an important and tricky issue
for sensor fusion.

B. Reflection toward the Project Course

At the last, we have several suggestions for the upcoming
students to have a better experience throughout the project.

1) Have consistent meetings (with and without project
owner).

2) Pay attention to the time plan throughout the entire
project.

3) Do a thorough risk analysis and plan for changes.

4) Difference between theory and real-world application.
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